描述变量离散趋势的常用指标包括哪些 描述变量离散趋势的常用指标包括哪些内容
描述变量离散趋势的常用指标包括:极差、四分位数间距、方差、标准差、标准误差和变异系数等,其中方差和标准差最常用。离散趋势适用情况:均数相差不大,单位相同的资料。
极差极差是一组数据的最大值(xmax)与最小值(xmin)之差,通常用 R 表示。对于总体数据而言,极差也就是变量变化的范围或幅度大小,故也称为全距。组距数列中,极差≈最高组的上限-最低组的下限。优缺点:计算简便、含义直观、容易理解。它未考虑数据的中间分布情况,不能充分说明全部数据的差异程度。四分位数间距第3四分位数(Q3)与第1四分位数(Q1)之差,常用Qd表示。计算公式为:实质上是两端各去掉四分之一的数据以后的极差,表示占全部数据一半的中间数据的离散程度。四分位差越大,表示数据离散程度越大。是在一定程度上对极差的一种改进,避免了极端值的干扰。但它对数据差异的反映仍然是不充分的。四分位差是一种顺序统计量,适用于定序数据和定量数据。尤其是当用中位数来测度数据集中趋势时.平均差——各个数据与其均值的离差绝对值的算术平均数,反映各个数据与其均值的平均差距,通常以A.D表示。平均差含义清晰,能全面地反映数据的离散程度。但取离差绝对值进行平均,数学处理上不够方便,在数学性质上也不是最优的。方差方差是各个数据与其均值的离差平方的算术平均数.标准差
标准差比方差更容易理解。在社会经济现象的统计分析中,标准差比方差的应用更为普遍,经常被用作测度数据与均值差距的标准尺度。离散系数是极差、四分位差、平均差或标准差等变异指标与算术平均数的比率,以相对数的形式表示变异程度。将极差与算术平均数对比得到极差系数,将平均差与算术平均数对比得到平均差系数。最常用的离散系数是就标准差来计算的,称之为标准差系数:离散系数大,说明数据的离散程度大,其平均数的代表性就差;反之亦然.
除标明原创以外的内容,其他源于网络,请以官方为准。如有侵权:yimgjqzd@qq.com 或者【 点击提交 】第一时间进行删除!